THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5220 Complex Analysis and its Applications 2016-2017 Suggested Solution to Assignment 7

Update at 25/4/2017:

- Some typos in Question 3 and 4 have been fixed.

1 (a) Let $f(z)=\frac{3 z^{2}}{\left(z^{2}+1\right)\left(z^{2}+4\right)}$. For $R>4$, consider the positively oriented contour $C(R)=$ $[-R, R] \cup C^{+}(R)$, where $C^{+}(R)=\left\{R e^{i \theta} \mid \theta \in[0, \pi]\right\}$. By residue theorem, we have

$$
\begin{aligned}
\int_{-R}^{R} f(x) d x+\int_{C^{+}(R)} f(z) d z & =2 \pi i(\operatorname{Res}(f, i)+\operatorname{Res}(f(z), 2 i)) \\
& =2 \pi i\left(\frac{3(i)^{2}}{(i+i)\left(i^{2}+4\right)}+\frac{3(2 i)^{2}}{\left((2 i)^{2}+1\right)(2 i+2 i)}\right) \\
& =\pi
\end{aligned}
$$

Furthermore, by triangle inequality,

$$
\left|\int_{C^{+}(R)} \frac{3 z^{2}}{\left(z^{2}+1\right)\left(z^{2}+4\right)} d z\right| \leq \pi R \times \frac{3 R^{2}}{\left(R^{2}-1\right)\left(R^{2}-4\right)} \xrightarrow{R \rightarrow \infty} 0
$$

As a result, we have

$$
\int_{0}^{\infty} f(x) d x=\frac{1}{2} \int_{-\infty}^{\infty} f(x) d x=\frac{\pi}{2}
$$

(b) Let $f(z)=\frac{1}{2 z^{2}+2 z+1}$. For $R>2$, Consider the positively oriented contour $C(R)=$ $[-R, R] \cup C^{+}(R)$, where $C^{+}(R)=\left\{R e^{i \theta} \mid \theta \in[0, \pi]\right\}$. By residue theorem, we have

$$
\begin{aligned}
\int_{-R}^{R} f(x) d x+\int_{C^{+}(R)} f(z) d z & =2 \pi i \operatorname{Res}\left(f, \frac{-1+i}{2}\right) \\
& =2 \pi i \frac{1}{2\left(\frac{-1+i}{2}-\frac{-1-i}{2}\right)} \\
& =\pi
\end{aligned}
$$

Furthermore, by triangle inequality,

$$
\left|\int_{C^{+}(R)} \frac{1}{2 z^{2}+2 z+1} d z\right| \leq \pi R \times \frac{1}{2 R^{2}-2 R-1} \xrightarrow{R \rightarrow \infty} 0
$$

As a result, we have

$$
\text { P.V. } \int_{-\infty}^{\infty} f(x) d x=\pi
$$

(c) Let $f(z)=\frac{1}{z^{2}+4}$. For $R>4$, consider the positively oriented contour $C(R)=[-R, R] \cup$ $C^{+}(R)$, where $C^{+}(R)=\left\{R e^{i \theta} \mid \theta \in[0, \pi]\right\}$. By residue theorem, we have

$$
\begin{aligned}
\int_{-R}^{R} f(x) e^{i a x} d x+\int_{C^{+}(R)} f(z) e^{i a z} d z & =2 \pi i \operatorname{Res}\left(f e^{i a z}, 2 i\right) \\
& =2 \pi i \frac{e^{i a(2 i)}}{2 i+2 i} \\
& =\frac{\pi e^{-2 a}}{2}
\end{aligned}
$$

Furthermore, by Jordan lemma, since $|f(x)| \leq \frac{1}{R^{2}-4} \xrightarrow{R \rightarrow \infty} 0$, we have

$$
\int_{C^{+}(R)} f(z) e^{i a z} d z \xrightarrow{R \rightarrow \infty} 0
$$

As a result, we have

$$
\int_{-\infty}^{\infty} f(x) e^{i a x} d x=\frac{\pi e^{-2 a}}{2}
$$

which implies

$$
\int_{-\infty}^{\infty} \frac{\cos a x}{x^{2}+4} d x=\frac{\pi e^{-2 a}}{2}
$$

As a result,

$$
\int_{0}^{\infty} \frac{\cos a x}{x^{2}+4} d x=\frac{1}{2} \int_{-\infty}^{\infty} \frac{\cos a x}{x^{2}+4} d x=\frac{\pi e^{-2 a}}{4}
$$

(d) Let $f(z)=\frac{z}{2 z^{2}+2 z+1}$. For $R>4$, Consider the positively oriented contour $C(R)=$ $[-R, R] \cup C^{+}(R)$, where $C^{+}(R)=\left\{R e^{i \theta} \mid \theta \in[0, \pi]\right\}$. By residue theorem, we have

$$
\begin{aligned}
\int_{-R}^{R} f(x) e^{i 2 x} d x+\int_{C^{+}(R)} f(z) e^{i 2 z} d z & =2 \pi i \operatorname{Res}\left(f e^{i 2 z}, \frac{-1+i}{2}\right) \\
& =2 \pi i \frac{\left(\frac{-1+i}{2}\right) e^{i 2\left(\frac{-1+i}{2}\right)}}{2\left(\frac{-1+i}{2}-\frac{-1-i}{2}\right)} \\
& =\pi e^{-1-i}\left(\frac{-1+i}{2}\right)
\end{aligned}
$$

Furthermore, by Jordan lemma, since $|f(x)| \leq \frac{R}{2 R^{2}-2 R-1} \xrightarrow{R \rightarrow \infty} 0$, we have

$$
\int_{C^{+}(R)} f(z) e^{i 2 z} d z \xrightarrow{R \rightarrow \infty} 0
$$

As a result, we have

$$
\text { P.V. } \int_{-\infty}^{\infty} f(x) e^{i 2 x} d x=\pi e^{-1-i}\left(\frac{-1+i}{2}\right),
$$

which implies

$$
\text { P.V. } \int_{-\infty}^{\infty} \frac{x \sin 2 x}{2 x^{2}+2 x+1} d x=\frac{\pi e^{-1}}{2}(\cos 1+\sin 1)
$$

2 Let $f(z)=\frac{z}{z^{2}-1}$. For $R>4$, consider the positively oriented contour $C(R)=[-R,-1-\epsilon] \cup$ $C^{+}(-1, \epsilon) \cup[-1+\epsilon, 1-\epsilon] \cup C^{+}(1, \epsilon) \cup[1+\epsilon, R] \cup C^{+}(R)$, where $C^{+}(R)=\left\{R e^{i \theta} \mid \theta \in[0, \pi]\right\}$ and $C^{+}(\pm 1, \epsilon)=\left\{\epsilon e^{i \theta} \pm 1 \mid \theta \in[0, \pi]\right\}$. By residue theorem, since $f(z) e^{i 2 z}$ is analytic inside $C(R)$, we have

$$
\int_{C(R)} f(z) e^{i 2 z} d z=0
$$

By Jordan lemma, since $|f(z)| \leq \frac{R}{R^{2}-1} \xrightarrow{R \rightarrow \infty} 0$, we have

$$
\int_{C^{+}(R)} f(z) e^{i 2 z} d z \xrightarrow{R \rightarrow \infty} 0
$$

Moreover,
$\int_{C^{+}(1, \epsilon)} f(z) e^{i 2 z} d z+\int_{C^{+}(-1, \epsilon)} f(z) e^{i 2 z} d z=\pi i\left(\operatorname{Res}\left(f(z) e^{i 2 z}, 1\right)+\operatorname{Res}\left(f(z) e^{i 2 z},-1\right)\right)=\frac{\pi i\left(e^{2 i}+e^{-2 i}\right)}{2}$
Therefore, we have

$$
\text { P.V. } \int_{-\infty}^{\infty} \frac{x \sin 2 x}{x^{2}+1} d x=\operatorname{Im}\left(\frac{\pi i\left(e^{2 i}+e^{-2 i}\right)}{2}\right)=\pi \cos 2
$$

3 Let $f(z)=\frac{1}{z^{3}}$. For $R>4$, consider the positively oriented contour $C(R)=[-R,-\epsilon] \cup C^{+}(\epsilon) \cup$ $[\epsilon, R] \cup C^{+}(R)$, where $C^{+}(R)=\left\{R e^{i \theta} \mid \theta \in[0, \pi]\right\}$ and $C^{+}(\epsilon)=\left\{\epsilon e^{i \theta} \mid \theta \in[0, \pi]\right\}$. By residue theorem, since $f(z)\left(\frac{3}{4} e^{i z}-\frac{1}{4} e^{i 3 z}-\frac{1}{2}\right)$ is analytic inside $C(R)$, we have

$$
\int_{C(R)} f(z)\left(\frac{3}{4} e^{i z}-\frac{1}{4} e^{i 3 z}-\frac{1}{2}\right) d z=0
$$

Note that $\left|\int_{C^{+}(R)} \frac{1}{2} f(z) d z\right| \leq \pi R \times \frac{1}{2 R^{3}} \xrightarrow{R \rightarrow \infty} 0$. Furthermore, by Jordan lemma, since $|f(z)| \leq$ $\frac{1}{R^{3}} \xrightarrow{R \rightarrow \infty} 0$, we have

$$
\int_{C^{+}(R)} f(z) e^{i z} d z \xrightarrow{R \rightarrow \infty} 0 \text { and } \int_{C^{+}(R)} f(z) e^{i 3 z} d z \xrightarrow{R \rightarrow \infty} 0
$$

Moreover,

$$
\begin{aligned}
& \int_{C^{+}(0, \epsilon)} f(z)\left(\frac{3}{4} e^{i z}-\frac{1}{4} e^{i 3 z}-\frac{1}{2}\right) d z \\
= & \pi i \operatorname{Res}\left(f(z)\left(\frac{3}{4} e^{i z}-\frac{1}{4} e^{i 3 z}-\frac{1}{2}\right), 0\right) \\
= & \pi i \operatorname{Res}\left(\frac{1}{z^{3}}\left(\frac{3}{4}\left(1+(i z)+\frac{(i z)^{2}}{2}+\ldots\right)-\frac{1}{4}\left(1+(3 i z)+\frac{(3 i z)^{2}}{2}+\ldots\right)-\frac{1}{2}\right), 0\right) \\
= & \frac{3 \pi i}{4}
\end{aligned}
$$

Therefore, we have

$$
\text { P.V. } \int_{-\infty}^{\infty} \frac{\sin ^{3} x}{x^{3}} d x=\operatorname{Im}\left(\frac{3 \pi i}{4}\right)=\frac{3 \pi}{4}
$$

4 Consider the function $f(z)=\frac{\sqrt{z}}{z^{2}+1}$ with the branch cut along positive x-axis. Consider the contour $C=C_{R}+L_{1}+C_{\epsilon}+L_{2}$, where $C_{R}=\left\{R e^{i \theta} \mid \theta \in[0,2 \pi]\right\}, L_{1}=\{(\epsilon-R) t+R \mid t \in[0,1]\}$, $C_{\epsilon}=\left\{\epsilon e^{i(2 \pi-\theta)} \mid \theta \in[0,2 \pi]\right\}$ and $L_{2}=\{(R-\epsilon) t+\epsilon \mid t \in[0,1]\}$.
On $L_{1}, \log z=\ln r+2 \pi i$. On $L_{2}, \log z=\ln r$. Therefore,

$$
\begin{aligned}
& \int_{L_{1}} f(z) d z=\int_{R}^{\epsilon} \frac{e^{\frac{1}{2}(\ln r+2 \pi i)}}{r^{2}+1} d r=\int_{\epsilon}^{R} \frac{\sqrt{r}}{r^{2}+1} d r \quad \text { and } \\
& \int_{L_{2}} f(z) d z=\int_{\epsilon}^{R} \frac{e^{\frac{1}{2}(\ln r)}}{r^{2}+1} d r=\int_{\epsilon}^{R} \frac{\sqrt{r}}{r^{2}+1} d r=\int_{L_{1}} f(z) d z
\end{aligned}
$$

On the other hand,

$$
\left|\int_{C_{\epsilon}} f(z) d z\right| \leq 2 \pi \epsilon \frac{\sqrt{\epsilon}}{1-\epsilon^{2}} \xrightarrow{\epsilon \rightarrow 0} 0 \text { and }\left|\int_{C_{R}} f(z) d z\right| \leq 2 \pi R \frac{\sqrt{R}}{R^{2}-1} \xrightarrow{R \rightarrow \infty} 0
$$

As a result,

$$
\begin{aligned}
2 \int_{0}^{\infty} f(z) d z & =2 \pi i(\operatorname{Res}(f, i)+\operatorname{Res}(f,-i)) \\
& =2 \pi i\left(\frac{\sqrt{i}}{i+i}+\frac{\sqrt{-i}}{-i-i}\right) \\
& =2 \pi i\left(\frac{e^{\frac{1}{2}\left(\ln (1)+i\left(\frac{\pi}{2}\right)\right)}}{2 i}+\frac{e^{\frac{1}{2}\left(\ln (1)+i\left(\frac{3 \pi}{2}\right)\right)}}{-2 i}\right) \\
& =\sqrt{2} \pi
\end{aligned}
$$

Hence

$$
\int_{0}^{\infty} f(z) d z=\frac{\sqrt{2} \pi}{2}
$$

